Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

УТВЕРЖДЕНО

Решением Ученого совета инженерно-физического факультета высоких технологий) от « $\underline{16}$ » __июня ___2020 г. Протокол № __11 ___ Председатель _____ А.Ш.Хусаинов (подпись) «___17 __ » ____июня ____2020г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ногофазные потоки в трубопроводе».
женерно-физический факультет высоких технологий
1 1 1 1
фтегазовое дело и сервис
K

Направление(специальность)	21.03.01	«Нефтегазовое дело»	(бакалавриат)
----------------------------	----------	---------------------	---------------

код направления, полное наименование)

Направленность (профиль специализации): Эксплуатация и обслуживание объектов добычи нефти

Дата введения в учебный процесс УлГУ: « 01 » сентября 2020 г.

Программа актуализирована на заседании кафедры: протокол № 11 от _26.06 2021 г. Программа актуализирована на заседании кафедры: протокол № _ от _ ___ 201 _ г. Программа актуализирована на заседании кафедры: протокол № _ от _ ___ 201 _ г.

Сведения о разработчиках:

Ф.И.О.	Кафедра	Должность, ученая степень, звание
Кузнецов Александр Иванович	Нефтегазового дела и сервиса	Зав.кафедрой,к.т.н., профессор

кающей кафедрой
A II I//
<u>А,И,Кузнецов</u> / (Подпись)
<u>201</u> г.
_

Форма А Страница 1из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

ЛИСТ ИЗМЕНЕНИЙ

№ п/п	Содержание изменения или ссылка на прилагаемый текст изменения в п.п.4.2. Объем дисциплины по виде	ФИО заведующего кафедрой, реализу-ющей дисциплину/выпускающей кафедрой	Подпись	Дата 01.09.
	ной работы Рабочая программа дисциплины после таблицы добавлено об использовании: «*В случае необходимости использовария в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения»;		Amma	2020
2.	в п. 13. Специальные условия для обу- ся с ограниченными возможностями здоровья Рабочая программа дисциплины добавлен абзац: «В случае необходимости ис- пользования в учебном процессе частично/исключительно дистанцион- ных образовательных технологий, организация работы ППС с обу- чающимися с ОВЗ и инвалидами предусматривается в электронной информационно-образовательной сре- де с учетом их индивидуальных пси- хофизических особенностей».		Amm	01.09.

Форма А Страница 2из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины -формирование у студентов базовых знаний по математическому моделированию процессов трубопроводного транспорта нефти, нефтепродуктов и газа и расширение представлений о структуре и свойствах транспортируемых потоков, подходах и методах их гидродинамической оценки. При изучении дисциплины обеспечивается фундаментальная подготовка по основным законам механики и термодинамики, определяющих движение жидкостей и газов в трубах.

Задачи освоения дисциплины -ознакомление студентов с основными принципами построения системы подготовки, выполнять простые и усложненные тепло и гидравлические расчеты трубопроводов, транспорта и хранения скважинной продукции;

- получения навыков решения теоретических задач по определению условий и режимов транспорта углеводородов с учетом их физико-химических свойств;
- формирование навыков оптимального и рационального использования современных технологий подготовки, транспорта и хранения скважинной продукции;
- применение полученных знаний, навыков и умений в последующей профессиональной деятельности.

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП:

Дисциплина «Многофазные потоки в трубопроводе» относится к вариативной части (дисциплины по выбору) Блока 1 – дисциплины (модули). Дисциплина изучается на 3-м курсе в 5-м семестре и базируется на дисциплинах: Математика, Физика, Геология и Литология, Гидравлика и Подземная гидродинамика, Физика нефтегазового пласта и предшествует изучению специальных дисциплин: «Интерпретация результатов гидродинамических исследований», «Моделирование разработки нефтяных месторождений», «Управление разработкой нефтяных месторождений».

З.ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОПОП

Процесс изучения дисциплины направлен на формирование следующих компетенций

Код и наименова-	Перечень планируемых результатов обучения по дисциплине
ние реализуемой	(модулю), соотнесенных с индикаторами достижения компе-
компетенции	тенций
ОПК-1	2 Marty: Honorowski to the boby to Howard Marty to both the board
_	Знать: нормативные правовые документы регулирующие проведе-
Способность решать	ние исследований скважин и пластов;
задачи, относящиеся	-особенности применения отечественных и импортных глубинных
к профессиональной	приборов
деятельности, при-	Уметь: описать отечественные и иностранного производства при-
меняя методы моде-	
лирования, матема-	боры и оборудование устья скважины, подготовить их к работе и
тического анализа,	провести измерения в соответствии с программой
	Владеть: -навыками и работы с российскими и зарубежными
естественнонаучные	приборами для исследования скважин и пластов

Форма А Страница Зиз 16

и общеинженерные знания;	
ОПК-4 Способность проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	Знать: виды и типы исследований скважин и пластов, применяемых в России и других странах; - Уметь: анализировать программу исследования скважины в конкретных геолого-технических условиях; Владеть: -навыками и работы с российскими и зарубежными приборами для исследования скважин и пластов
ПК-2 Способность осуществлять оперативное сопровождение технологических процессов добычи нефти, газа и газового конденсата	Знать:- нормативные правовые документы регулирующие проведение исследований скважин и пластов -особенности применения отечественных и импортных глубинных приборов - Уметь: переформулировать программу исследования при возникновении непредвиденных обстоятельств; - описать результаты исследований и представить их заказчику в согласованном формате. Владеть: навыками проведения качественных исследований скважин и пластов в соответствии с регламентами и инструкциями
ПК-3 Способность осуществлять инженерное сопровождение технологических процессов добычи нефти, газа и газового конденсата	- Знать: виды и типы исследований скважин и пластов, применяемых в России и других странах; Уметь: -описать отечественные и иностранного производства приборы и оборудование устья скважины, подготовить их к работе и провести измерения в соответствии с программой Владеть: -навыками и работы с российскими и зарубежными приборами для исследования скважин и пластов
ПК-11 Способность осуществлять оперативный контроль потоков углеводородного сырья и режимов работы технологических объектов и управление ими в границах зоны обслуживания организации нефтегазовой отрасли;	Знать: нормативные правовые документы регулирующие проведение исследований скважин и пластов; -особенности применения отечественных и импортных глубинных приборов -Уметь: описать технические средства и технологию расшифровки показаний автономных глубинных приборов; Владеть: -навыками использования современных технологий исследования скважин и пластов в различных геолого-технических условиях

Форма А Страница 4из 16

4.ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

4.1.Объем дисциплины в зачетных единицах - 2 зачётные единицы 4.2.1 Объем дисциплины и виды учебной работы

Dun anagua i nagama	Количество часов	обучения очная			
Вид учебной работы	Васта на плани	в т.ч. і	в т.ч. по семестрам		
	Всего по плану	7	-		
1					
Контактная работа обучающегося с	36	36			
преподавателем в соответствии с УП					
Аудиторные занятия:	36	36			
- лекции	18	18			
- лабораторные занятия	18	18			
Самостоятельная работа	36	36			
Форма текущего контроля знаний и	устный	-	устный		
контроля самостоятельной работы: те-	опрос,		опрос,		
стирование, контр. работа, кол-	собеседование		собе-		
локвиум, реферат и др. (не менее 2 ви-			седова-		
дов)			ние		
Курсовая работа	-	=	-		
Виды промежуточного контроля (экза-	зачёт	зачёт			
мен, зачет)					
Всего часов по дисциплине	72	72			

В случае необходимости использовария в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения»;

4.2.2 Объем дисциплины и виды учебной работы - заочная

Dun vinosuoŭ nosomi	Количество часов заочная)	(форма обу	учения	
Вид учебной работы	Вооро но ниому	в т.ч. по семестрам		
	Всего по плану	7	-	
1				
Контактная работа обучающегося с	8	8		
преподавателем в соответствии с УП				
Аудиторные занятия:	8	8		
- лекции	4	4		
- практические и семинарские занятия	4	4		
Самостоятельная работа	60	60		
Форма текущего контроля знаний и	устный	-	устный	
контроля самостоятельной работы: те-	опрос,		опрос,	
стирование, контр. работа, кол-	сбеседование		собе-	
локвиум, реферат и др. (не менее 2 ви-			седова-	

Форма А Страница 5из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

дов)			ние	
Курсовая работа	-	-	-	
Виды промежуточного контроля (экза-	Зачёт	Зачёт		
мен, зачет)	(4)	(4)		
Всего часов по дисциплине	72	72		

В случае необходимости использовария в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения»;

4.3.Содержание дисциплины(модуля). Распределение часов по темам и видам учебной работы:

4.3.1 Форма обучения - очная

<u>4.3.1 Форма обуч</u>		1	Rı	илы учеб	Эных заняти	 ıй	
Название и разделов	Всего		Аудиторн			Само-	Форма
и тем		лекци и	практи- ческие заня- тия, семинар	Лабор атор- ная ра- бота	Занятия в интер- активной форме	стоя- тель- ная ра- бота	теку- щего контро- ля знаний
Тема1. 1 Цели и задачи дисциплины, ее место в учебном процессе	16	4	4			8	Устный опрос
Тема 2. Феномено- логическая теория много- скоростного контину- ума	20	6	4		2	10	Устный опрос
Тема 3. Перемещение нефти по трубам. Инженерные методы	18	4	6		2	8	Устный опрос
Тема 4 Численные методы, компьютерные Численные методы, компьютерные методики расчета нефтегазовых задач	18	4	4		1	10	Устный опрос
Итого	72	18	18		5	36	

4.3.2 Форма обучения - заочная

		Виды учебных заняті			й		
Название и разделов	Всего	Аудиторные занятия		Само-	Форма		
и тем		лекци	практи-	Лабор		стоя-	теку-

Форма А Страница 6из 16

		И	ческие заня- тия, семинар	атор- ная ра- бота	Занятия в интер- активной форме	тель- ная ра- бота	щего контро- ля знаний
Тема1. 1 Цели и задачи дисциплины, ее место в учебном процессе	16	2	-			14	Устный опрос
Тема 2. Феномено- логическая теория много- скоростного контину- ума	18	-	2		2	16	Устный опрос
Тема 3. Перемещение нефти по трубам. Инженерные методы	18	2	-		2	16	Устный опрос
Тема 4 Численные методы, компьютерные Численные методы, компьютерные методики расчета нефтегазовых задач	16	-	2		-	14	Устный опрос
зачет Итого	72	4	4		4	60	

5.СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Тема 1. Цели и задачи дисциплины, ее место в учебном процессе

Лекция 1.1 Предмет, цель, задачи, структура курса и его связь с дисциплинами физико-химического профиля курсами специальности "проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ".

Перечень дисциплин, изучение которых необходимо для усвоения вопросов курса. Области приложения механики многофазных сред. Теоретические модели, схематизация и постановка задач, экспериментальные методы исследований. Основные исторические этапы в развитии механики многофазных сред

Лекция 1.2 Микроскопические, статистические и макроскопические феноменологические методы описания физических явлений, свойств, взаимодействий и движений материальных сред. Достоинства и недостатки. Проблема моделирования многофазных сред. Микромасштабы, микропараметры и микроуравнения. Уравнения для локальных параметров на межфазной поверхности. Осредненные параметры гетерогенной среды. Основные свойства осредненных величин. Система осредненных уравнений.

Тема 2. Феноменологическая теория многоскоростного континуума

Форма А Страница 7из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

Лекция 2.1. Вводные положения. Основные понятия и определения

Кинематические характеристики движения и их свойства: скорость, линии тока, критические точки, ускорение, тензор скоростей деформации и его инварианты, главные оси тензоров, вектор вихря, потенциал и циркуляция скорости, установившееся и неустановившееся движение среды. Многокомпонентные и многофазные среды, дисперсные системы. Главные допущения в математическом моделировании процессов переноса в гомогенных и гетерогенных смесях. Многоскоростной континуум, модель раздельного движения взаимопроникающих континуумов. Различие многокомпонентной и многофазной среды. Реальные и условные фазы.

Лекция 2.2 Элементы термодинамики двухфазных сред, схематизация газожидкостных систем, структура и формы движения двухфазных потоков

Волновые процессы в газожидкостных средах. Основные законы термодинамики двухфазных сред. Равновесие фаз: тепловое и динамическое. Состояние устойчивого, неустойчивого и метастабильного равновесия сред. Изотермические и неизотермические течения. Скорость звука в двухфазных жидкостях. Тепломассообмен и гидродинамика в трубах с двухфазными потоками. Межфазный массообмен и фазовые переходы. Конденсация и испарение. Связь теории устойчивости и флуктуаций. Гетерогенные флуктуации и кинетическое уравнение конденсации. Скорость образования ядер конденсации, роль твердых поверхностей, ограничивающих движение смесей. Стабильный и нестабильный конденсат. Гомогенный и гетерогенный режимы фазовых переходов. Основные представления термогидродинамики многофазных сред.

Лекция 2.3 Математическая формулировка процессов переноса в однофазных и многофазных средах.

Свойства изотропии и анизотропии. Точки зрения Эйлера и Лагранжа при изучении движения сплошных сред. Предпосылки при выводе уравнений сохранения. Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная); субстанциональные производные составляющих смеси и среды в целом. Простейшие модели материальных сред. Идеальная жидкость. Уравнения Эйлера. Интегралы Бернулли и Коши-Лагранжа. Явление кавитации. Возникновение вихрей. Теорема Томсона и динамические теоремы о вихрях. Модели жидких и газообразных сплошных сред: вязкая, несжимаемая, ньютоновская, упругая, с тепловым расширением, совершенного и реального газов. Уравнения движения и сплошности в форме Эйлера в однофазной области для многокомпонентной смеси. Смеси с реагирующими компонентами. Векторы потоков диффузии. Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжений и его свойства. Механическое взаимодействие на границе раздела фаз. Скачок давления на границе раздела фаз. Уравнение сохранения количества движения в потоке многофазной среды. Уравнение сохранения полной энергии. Кинетическая энергия и уравнение кинетической энергии для сплошной среды в интегральной и дифференциальной формах. Коэффициенты молекулярного переноса и различные формы уравнений Стефана-Максвелла. Краевые условия на непроницаемых поверхностях, условия сопряжения. Дифференциалные уравнения одномерного течения смеси в каналах постоянного поперечного сечения.

Лекция 2.4 Диффузионное (одножидкостное) приближение для гомогенных смесей.

Особенности математического описания гетерогенных смесей. Межфазный обмен импульсом и энергией. Термодинамические уравнения состояния фаз, работа внутренних сил. Закон сохранения энергии, внутренняя энергия. Вектор потока тепла и температуры. Дифференциальные уравнения энергии и притока тепла. Законы для притока тепла. Различные частные процессы: нестационарный, изотермический, адиабатический.

Лекция 2.5 Система уравнений N-фазной смеси вязких сжимаемых (несжимаемых) фаз с общим давлением, поверхности разрыва.

Энтропия, некомпенсированное тепло и производство энтропии. Неравенство диссипации, тождество

Форма А Страница 8из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

Гиббса. Диссипативная функция и производство энтропии в двухфазной среде с фазовыми переходами. Основные макроскопические механизмы диссипации. Термодинамические силы и потоки. Уравнения Онзагера. Принципы взаимности, симметрии Кюри

Лекция 2.6 Методы усреднения параметров течения жидкости и газа.

Элементы теории вычисления осредненных по межфазной поверхности параметров в уравнениях механики гетерогенных сред. Уравнения, описывающие эволюцию осредненных параметров межфазной поверхности и их вычисление в случае, когда межфазная поверхность есть поверхность несжимаемой ньютоновской жидкости. Граничные условия а межфазной поверхности для локальных параметров в случае несжи-

маемых фаз. Система уравнений механики гетерогенных сред в криволинейной ортогональной системе координат в случае, когда межфазной поверхностью является поверхность раздела несжимаемых ньютоновских жидкостей.

Теория размерности в динамике однофазных и многофазных сред.

Лекция 2.7 Физическое подобие, моделирование.

Система определяющих параметров для выделенного класса явлений. Размерные и безразмерные величины. Первичные и вторичные единицы измерения. Величины

с зависимыми и независимыми размерностями. Формула размерности. Основные теоремы теории подобия. П-теорема, ее значение в вопросах математического моделирования. Сущность физического моделирования. Примеры моделирования с использованием метода подобия в решении задач о течении вязкой жидкости в трубах и каналах, тепловых

процессов в трубах. Общий метод приведения системы определяющих уравнений к безразмерному виду. Критерии и числа подобия в математической модели, уравнения подобия. Автомодельные движения. Течения в трубах. Модели и методы.

Физические особенности каналовых течений одно- и многофазных сред, качественные эффекты влияния вязкости. Сопротивление частиц в несущем потоке. Силы, действующие на частицу в потоке жидкости. Проблема гидродинамической устойчивости. Уравнения Орра-Зоммерфельда. Теоремы Сквайра, Рэлея о кривизне профиля скорости и

устойчивости потока. Равномерное и неравномерное движение. Течение Пуазейля. Понятие о пограничном слое. Уравнение Прандтля. Гидродинамика и теплообмен при ламинарном течении вязкого потока в круглой трубе произвольного поперечного сечения с учетом (или без) действия внешних сил.

Лекция 2.8 Турбулентные движения.

Опыт Рейнольдса. Осреднение характеристик турбулентного движения. Уравнения Рейнольдса. Современные методы моделирования и расчета турбулентных потоков инертных и реагирующих однофазных и многофазных сред. Особенности моментного метода, моделирования крупных вихрей, прямого численного моделирования, стохастической теории. Пристеночная турбулентность.

Лекция 2.9 Управление интегральными параметрами течения и тепломассообмена

Роль аналитических и численных методов .Моделирования низкорейнольдсовых течений. Многопараметрические модели турбулентного переноса импульса, тепла и массы. Уравнения баланса турбулентной кинетической энергии двухфазного потока и скорости ее диссипации. Микро- и макротурбулентные пульсации в газожидкостных потоках..Математические модели течений жидкости и газа в трубопроводе.

Лекция 2.10 Установившееся и неустановившееся течение слабосжимаемой системы жидкость-газ в трубопроводе постоянного и переменного поперечного сечений.

Распространение волн в трубопроводе. Гидравлическое сопротивление трения. Пробковая, расслоенная структуры течения и основные критерии подобия. Гидравлический удар, условия возникновения воздушных и водных "пробок", методы борьбы и ними. Потери на трение, местные сопротивления. Течения с неполным заполнением поперечного сечения трубопровода. Аналогия с русловыми течениями.

Форма А Страница 9из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

Тема 3. Перемещение нефти по трубам. Инженерные методы. Технологический расчет трубопровода.

Лекция 3.1 Уравнение Бернулли для участка трубопровода.

Законы трения, базисные формулы. Гидравлический уклон, влияние геометрии на режим течения, самотечные участки нефтепровода. Гидравлический расчет нефтепровода при движении смеси нефти и газа. Специальные методы транспорта высоковязких и застывающих нефтей: изменения релогии, физические, физико-химические, химические. Последовательная перекачка нефтепродуктов. Математическое моделирование смесеобразования, рост объема смеси, интегральное содержание нефтей в смеси.

Лекция 3.2Тепловой и гидравлический расчет неизотермических трубопроводов.

Характерная и вероятностная температуры. Коэффициент теплопередачи от нефтепродукта в трубопроводе в окружающую среду. Коэффициент теплоотдачи посредством конвекции от нефтепродукта к вертикальной и горизонтальной стенке. Критические параметры и критерии подобия (Re, Gr, Ar, Ra, Pr, Pe, Zh, St, Nu, cf). Длины начальных участков и участков установления параметров течения и теплообмена в

режимах течения нефтепродукта: ламинарном, турбулентном. Потери напора на трение и теплоотдачу в данных режимах течения нефти в трубопроводе.

Лекция 3.3 Структура газожидкостных течений и области их существования

Пробковая и расслоенная структура газожидкостной среды в горизонтальных и наклонных трубах. Закономерности изменения газосодержания в газожидкостные потоки в вертикальных трубах. Закономерности изменения газосодержания в газожидкостных смесях при пробковой структуре в условиях переменности угла наклона трубы, числа Рейнольдса, теплофизических свойств компонентов смеси. Интегральные параметры при пробковой и кольцевой структуре течения смеси. Расслоенное течение жидкости и газа в цилиндрических трубах. Постановка задачи для ламинарного и турбулентного потоков. Основные уравнения. Локальные скорости и объемные расходы. Расчетные зависимости для структуры при восходящем и нисходящем течениях. Области существования расслоенного течения. Осредненные и пульсационные скорости, касательные напряжения, их корреляционный анализ. Масштабы турбулентности.

Лекция 3.4 Методы гидравлического и теплового расчета горизонтальных и рельефных трубопроводов.

Оценка динамики, трения и теплообмена в прямоточном, закрученном ламинарном и турбулентном потоках.

Тема 4. Численные методы, компьютерные методики расчета нефтегазовых задач

Лекция 4.1. Введение в численные методы. Основные определения теории разностных схем и методов численного анализа явлений.

Численное дифференцирование и вычислительная погрешность формул расчета. Сетка, дискретизация, схема, разностные уравнения, порядок и ошибка аппроксимации, сходимость решений. Приемы построения и исследования разностных операторов. Устойчивость. Основные теоремы устойчивости и сходимости. Явная и неявная схема. Метод Зейделя решения нелинейных уравнений. Конечно-разностные методы. Примеры исследования разностной схемы для уравнений в частных производных: параболический, гиперболический и эллиптический тип. Условие Куранта, Фридрихса и Леви (КФЛ), необходимое для устойчивости явной разностной схемы. Принцип максимума. Схемы и методы решения дифференциальных уравнений о течении смесей жидкостей и газов в трубопроводах.

Форма А Страница 10из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

Лекция 4.2 Методы решения системы ЛАУ с трехдиагональной матрицей.

Матричная прогонка для многомерных задач. Простейшие схемы дробных шагов: продольно-поперечная прогонка и стабилизирующая поправка. Схемы расщепления оператора по пространственным переменным. Понятие о методах конечных элементов, контрольного объема, алгоритме SIMPLE при численном моделировании сложных процессов переноса тепла, массы и импульса.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Данный вид работы не предусмотрен УП

7.ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

Лабораторная работа №1.Исследование скважин методом последовательной смены установившихся притоков.

<u>Цель исследования.</u> Определение коэффициента продуктивности скважин, гидропроводности и проницаемости призабойной части пласта.

<u>Содержание.</u> Исследование скважины методом смены установившихся притоков; построение индикаторной кривой; определение коэффициента продуктивности скважины; определение коэффициента гидропроводности пласта и проницаемости пласта.

<u>Результат лабораторной работы.</u> Определение динамического уровня в скважине; определение дебита скважины; определение среднего значения дебита скважины.

Лабораторная работа №2.Определение параметров пласта по кривой восстановления давления (КВД) в возмущающей скважине.

<u>Цель исследования.</u> Ознакомление с методом обработки кривых восстановления давления в скважине. определение гидропроводности, проницаемости и пьезопроводности; определение приведенного радиуса скважины.

<u>Содержание.</u> Технология получения кривой восстановления давления в промысловых условиях сводится к прекращению отбора жидкости из скважины или остановки откачиваемого жидкость насоса. За изменением забойного давления после остановки скважины следят по приборам.

Результат лабораторной работы. Измерение восстановления давления в скважине

. Лабораторная работа №3 Определение параметров пласта по результатам гидродинамического взаимодействия скважин (гидропрослушивания)

<u>Цель исследования</u>. Определение коллекторных свойств пласта методом гидропрослушивания.

<u>Содержание.</u> По данным снятых показаний пъезометром на некотором расстоянии от скважины строится кривая гидропрослушивания и по ней определяются параметры пласта пъзопроводности и проницаемости.

<u>Результат лабораторной работы</u>. Обработка кривой гидропрослушивания и определение пъзопроводности и проницаемости пласта.

8.ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Данный вид работы не предусмотрен УП

Форма А Страница 11из 16

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЭКЗАМЕНУ (ЗАЧЕТУ)

- 1.Сжимаемая и несжимаемая жидкость.
- 2. Плотность потока энтропии.
- 3. Поток энергии. Поток импульса, тензор плотности потока импульса.
- 4. Уравнение Эйлера.
- 5. Идеальная жидкость.
- 6. Закон Архимеда.
- 7. Уравнение Навье-Стокса.
- 9. Кинематическая, динамическая вязкость.
- 10. Ламинарное течение несжимаемой жидкости. Число Рейнольдса.
- 11.Точные решения уравнения движения несжимаемой жидкости: одномерное течение между двумя параллельными плоскими стенками, течение по трубе.
- 12. Закон Гука.
- 13. Деформация прямоугольного параллепипеда.
- 14. Деформация сдвига, задача о бруске с закрепленными боковымиграницами.
- 15. Истечение жидкости из отверстий при постоянном напоре.
- 16. Истечение жидкости из отверстий при переменном напоре.

10.САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩИХСЯ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяются в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол №8/268 от $26.03.2019 \, \text{г.}$).

Форма обучения – *очная*.

Название разделов и тем	Вид самостоятельной работы (проработка учебного материала, решение задач, реферат, доклад, контрольная работа, подготовка к сдаче зачета, экзамена и др.)	Объем в ча- сах	Форма контроля (проверка решения задач, реферата и др.)
1 Цели и задачи дис- циплины, ее место в учебном процессе	• Проработка учебного материала с использованием ресурсов учебнометодического и информационного обеспечения дисциплины; Подготовка к сдаче экзамена	4	устный опрос, зачёт
2. Феноменологическая теория много- скоростного континуума	 Проработка учебного материала с использованием ресурсов учебнометодического и информационного обеспечения дисциплины; Подготовка к сдаче экзамена 	4	устный опрос, зачёт
	• Проработка учебного материала с	10	устный

Форма А Страница 12из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

3. Перемещение нефти	использованием ресурсов учебно-		опрос,
по трубам. Инженерные	методического и информационного		зачёт
методы	обеспечения дисциплины;		
	• Подготовка к сдаче экзамена		
4 Численные методы,	• Проработка учебного материала с	10	устный
компьютерные	использованием ресурсов учебно-		опрос,
Численные методы,	методического и информационного		зачёт
компьютерные	обеспечения дисциплины;		
методики расчета неф-	• Подготовка к сдаче экзамена		
тегазовых задач			

11.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

а)Список рекомендуемой литературы основная

- 1. Галеев, Виль Бареевич. Магистральные нефтепродуктопроводы / Галеев Виль Бареевич, М.
- 3. Карпачев, В. И. Харламенко. 2-е изд., перераб. и доп. М.: Недра, 1988. В эк 10 экз.
- 2. Тетельмин, Владимир Владимирович. Магистральные нефтегазопроводы: учеб. пособие для вузов по спец. бакалавриата направл. "Нефтегазовое дело" / Тетельмин Владимир Владимирович, В. А. Язев. 4-е изд., доп. Долгопрудный: Интеллект, 2013. В эк 10 экз.
- 3.Белоусов, А. П. Оптическая диагностика многофазных потоков: учебное пособие / А. П. Белоусов. Новосибирск: Новосибирский государственный технический университет, 2011. 227 с. ISBN 978-5-7782-1696-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/45126.html

дополнительная

1 Нефтегазовые технологии: физико-математическое моделирование течений: учебное пособие для вузов / А. Б. Шабаров [и др.]; под редакцией А. Б. Шабарова. — Москва: Издательство Юрайт, 2019. — 215 с. — (Университеты России). — ISBN 978-5-534-03665-7. — Текст: электронный // ЭБС Юрайт [сайт]. — URL: https://www.biblio-online.ru/bcode/438335
2.Папуша, А. Н. Транспорт нефти и газа подводными трубопроводами. Проектные расчеты в компьютерной среде Mathematica / А. Н. Папуша. — Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2011. — 388 с. — ISBN 978-5-4344-0022-0. — Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. — URL: http://www.iprbookshop.ru/16646.html

учебно-методическая

1. Обеспечение надежности оборудования магистральных трубопроводов : учеб.-метод. пособие / А. В. Елькин. - Ульяновск, 2001. - 38 с. В эк - 7

LISTA	поличеь		ОИФ	Должность сотрудника научной библиотеки
/	ht 1	B. F	Laucelba	COTTACOBAHO: Songera ober 2

Форма А Страница 13из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

б) программное обеспечение -----

в) профессиональные базы данных, информационно-справочные системы:

1. Электронно-библиотечные системы:

- 1.1. **IPRbooks** : электронно-библиотечная система : сайт / группа компаний Ай Пи Ар Медиа. Саратов, [2020]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. **ЮРАЙТ** : электронно-библиотечная система : сайт / ООО Электронное издательство ЮРАЙТ. Москва, [2020]. URL: https://www.biblio-online.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. **Консультант студента**: электронно-библиотечная система: сайт / ООО Политех-ресурс. Москва, [2020]. URL: http://www.studentlibrary.ru/catalogue/switch_kit/x2019-128.html. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.4. **Лань** : электронно-библиотечная система : сайт / ООО ЭБС Лань. Санкт-Петербург, [2020]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. **Znanium.com**: электронно-библиотечная система: сайт / ООО Знаниум. Москва, [2020]. URL: http://znanium.com. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. Clinical Collection: коллекция для медицинских университетов, клиник, медицинских библиотек // EBSCOhost: [портал]. URL: http://web.a.ebscohost.com/ehost/search/advanced?vid=1&sid=e3ddfb99-a1a7-46dd-a6eb-2185f3e0876a%40sessionmgr4008. Режим доступа: для авториз. пользователей. Текст: электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2020].

3. Базы данных периодических изданий:

- 3.1. **База данных периодических изданий**: электронные журналы / ООО ИВИС. Москва, [2020]. URL: https://dlib.eastview.com/browse/udb/12. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3.2. **eLIBRARY.RU:** научная электронная библиотека : сайт / ООО Научная Электронная Библиотека. Москва, [2020]. URL: http://elibrary.ru. Режим доступа : для авториз. пользователей. Текст : электронный
- 3.3. «**Grebennikon**» : электронная библиотека / ИД Гребенников. Москва, [2020]. URL: https://id2.action-media.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4. Национальная электронная библиотека** : электронная библиотека : федеральная государственная информационная система : сайт / Министерство культуры РФ ; РГБ. Москва, [2020]. URL: https://нэб.pф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- **5.** SMART Imagebase // EBSCOhost : [портал]. URL: https://ebsco.smartimagebase.com/?TOKEN=EBSCO-1a2ff8c55aa76d8229047223a7d6dc9c&custid=s6895741. Режим доступа : для авториз. пользователей. Изображение : электронные.

6. Федеральные информационно-образовательные порталы:

- 6.1. **Единое окно доступа** к образовательным ресурсам : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: http://window.edu.ru/. Текст : электронный.
- 6.2. **Российское образование** : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: http://www.edu.ru. Текст : электронный.

7. Образовательные ресурсы УлГУ:

Форма А Страница 14из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

- 7.1. Электронная библиотека УлГУ: модуль АБИС Мега-ПРО / ООО «Дата Экспресс». URL: http://lib.ulsu.ru/MegaPro/Web. Режим доступа: для пользователей научной библиотеки. Текст: электронный.
- 7.2. **Образовательный портал УлГУ**. URL: http://edu.ulsu.ru. Режим доступа : для зарегистр. пользователей. Текст : электронный.

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории для проведения лекций и семинарских занятий, для проведения текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций.

Аудитории укомплектованы специализированной мебелью, учебной доской. Аудитории для проведения лекций оборудованы мультимедийным оборудованием для предоставления информации большой аудитории. Аудитории для практических занятий укомплектованы макетами и образцами оборудования. Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде, электронно-библиотечной системе

13.СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕН-НЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

«В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационно-образовательной среде с учетом их индивидуальных психофизических особенностей».

Форма А Страница 15из 16

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Рабочая программа по дисциплине «Многофазные потоки в трубопроводе»		

Разработчик ____ профессор кафедры п.К.Германович (подпись) (должность) (ФИО)

Форма А Страница 16из 16